Effect of Reactor Heat Transfer Limitations on Co Preferential Oxidation
نویسندگان
چکیده
Our recent studies of CO preferential oxidation (PrOx) identified systemic differences between the characteristic curves of CO conversion for a microchannel reactor with thin-film wall catalyst and conventional packed-bed lab reactors (m-PBR’s). Strong evidence has suggested that the reverse water-gas-shift (r-WGS) side reaction activated by temperature gradients in m-PBR’s is the source of these differences. In the present work, a quasi-3D tubular non-isothermal reactor model based on the finite difference method was constructed to quantitatively study the effect of heat transport resistance on PrOx reaction behavior. First, the kinetic expressions for the three principal reactions involved were formed based on the combination of experimental data and literature reports and their parameters were evaluated with a nonlinear regression method. Based on the resulting kinetic model and an energy balance derived for PrOx, the finite difference method was then adopted for the quasi-3D model. This model was then used to simulate both the microreactor and m-PBR’s and to gain insights into their different conversion behavior. Simulation showed that the temperature gradients in m-PBR’s favor the reverse water-gas-shift (r-WGS) reaction, thus causing a much narrower range of permissible operating temperature compared to the microreactor. Accordingly, the extremely efficient heat removal of the microchannel/thin-film catalyst system eliminates temperature gradients and efficiently prevents the onset of the r-WGS reaction.
منابع مشابه
Preferential Oxidation of Carbon Monoxide in a Thin-film Catalytic Microreactor: Advantages and Limitations
Silicon microreactors with thin-film wall catalyst were adopted for kinetic studies of CO preferential oxidation (PrOx). The activity of this catalyst was compared to other catalyst systems based on similar formulation. Internal and external mass transport and heat transport limitations of the microreactor were examined and comparisons were made to typical packed-bed lab reactors (m-PBR's). We ...
متن کاملSteam Reforming Integrated with Oxidation of Methanol in a Micro-Channel Reactor with Different Micro-Baffle Shapes
A micro-channel heat exchanger reactor with different micro-baffle shapes has been studied numerically. Governing equations were solved base on the finite volume method with FLUENT software. In upper section, oxidation reaction of methanol was occurred and in lower section, steam reforming of methanol was done. Two sections were separated with solid part which played as heat exchanger and trans...
متن کاملA scalable silicon microreactor for preferential CO oxidation: performance comparison with a tubular packed-bed microreactor
PEM fuel cells utilizing hydrogen and oxygen have shown great promise as future sources of clean, efficient power. Due to difficulties encountered in hydrogen storage and transport, investigation of on-board generation of hydrogen via fuel processing of liquid hydrocarbons has gained prominence. To achieve these goals, the need for compact reactor systems with effective component and heat integ...
متن کاملEffect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors
The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...
متن کاملCompetition of CO and H2 for Active Oxygen Species during the Preferential CO Oxidation (PROX) on Au/TiO2 Catalysts
Aiming at an improved mechanistic understanding of the preferential oxidation of CO on supported Au catalysts, we have investigated the competition between CO and H2 for stable, active oxygen (Oact) species on a Au/TiO2 catalyst during the simultaneous exposure to CO and H2 with various CO/H2 ratios at 80 ̋C and 400 ̋C by quantitative temporal analysis of products (TAP) reactor measurements. It...
متن کامل